

Sixth Semester B.E. Degree Examination, June/July 2018 Aerodynamics – II

Time: 3 hrs. Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1	a.	What is a source flow? Derive the velocity potential for a 2-D source flow.	(10 Marks)
	b.	Derive an expression for the velocity potential due to vortex sheet.	(10 Marks)
2	a.	Explain what is Down wash and bring out how downwash creates induced drag. What is Prandtl's Lifting theory limitation? Explain.	(10 Marks) (10 Marks)

- 3 a. For a 2-D flow, derive the velocity potential equation.
 b. What is Prandtl-Glaurt compressibility correction?
 (10 Marks)
 (10 Marks)
- 4 a. Explain what is Area Rule. (10 Marks)
 b. Derive an expression for the critical Mach Number. of an aerofoil. (10 Marks)

PART - B

- 5 a. Explain what is ground effect.
 b. What is the advantage of flying in formation.
 (10 Marks)
- 6 a. What is a slender body and explain what are the assumptions taken for analysis.

 b. Derive C_P for a flow past a cylinder.

 (10 Marks)
- 7 a. What are the effects of "Swept back wings"? (10 Marks)
 b. What are high life devices? Explain how leading edge and trailing edge flaps increase lift.
 (10 Marks)
- 8 a. The velocity profile for fully developed laminar flow between two parallel plates separated by a distance 2b is given by $u = u_{max} \left(1 \frac{y^2}{b^2}\right)$ where u_{max} is the centre line velocity (at y = 0). Determine the shear force per unit volume on a fluid element in the x-direction. Find the maximum value of this quantity for this flow, when b = 1 m, $u_{max} = 2$ m/s and $\mu = 10^{-1} \text{Nsec/m}^2$ (10 Marks)
 - b. Derive Blasius function expression. (10 Marks)

* * * * *